CE 572 – Spring 2015

Intersection Traffic Operations
Class 14
20 February 2015

Quiz

- 1. Define "flow ratio"
- 2. What is the importance of the flow ratio as part of the critical movement analysis?
- 3. What is the outcome of a critical movement analysis?
- 4. List the assumptions that you believe have been made about the signalized intersection (traffic flow, geometry, and signal control) when a critical movement analysis is conducted.

Scenarios

Signalized Intersection – Scenario #1	
Pretimed 🔀	
Actuated 🗌	
Demand < capacity	
Protected LTs	$ \begin{array}{c} 5 \\ 2 \\ \end{array} $
Uniform arrivals	3 6

Signalized Intersection – Scenario #2	
Pretimed 🔀	
Actuated 🗌	
Demand > capacity	
TH only	
Uniform arrivals	

Assignment 19

Complete analysis of intersection sufficiency of capacity using the critical movement analysis method given the following data:

- Two lanes on each approach, one exclusive LT lane and one TH lane.
- v₁ = 150
- v₂ = 500
- v₃ = 150
- v₄ = 550
- v₅ = 100
- $v_6 = 400$
- v₂ = 100
- v₈ = 400
- Cycle length = 80 sec
- Saturation flow rate = 1900 veh/hr/lane
- Lost time per phase = 4 sec

Assignment 20 - Reading

- Read "Signalized Intersection Module Excerpt: Uniform Delay" from the Resources page.
- Be ready to discuss (1) the uniform delay equation and (2) the graphical method for determining delay for the conditions that demand is less than capacity and greater than capacity.