CE 572 - Spring 2015

Intersection Traffic Operations

Class 09
6 February 2015

Model Categories	Attributes and Contrasts
Computational	Directly computes results from equations or tables Tracks events and processes
Simulation	Based on field data Based on theory
Empirical	Produces same results for given set of inputs Analytical
Deterministic Stochastic	Individual driver decisions
Microscopic	Aggregated flow characteristics
Macroscopic	Based on status of events of interest Updates made every time step
Event scan	Performance data produced
Time scan	Objective function optimized based on performance data
Evaluation	Optimization

Model Categories

Computational Simulation

Empirical
Anarytical
Deterministic Stochastic

Microscopic
Macroscopic
Event scan
Time scan
Evaluation
Optimization

Model Categories

Computational Simulation

Empirical
 Analytical

| Deterministic
 Stochastic | |
| :--- | :--- | :--- |
| Microscopic
 Macroscopic | |
| Event scan
 Time scan | |
| Evaluation
 Optimization | Event: Veh\#2 arrives
 and enters server
 Clock Time: 50.5 s |

Generator of event:

> Interval: Arrival headway Duration: 5.9 s

Event	Probability	Range of Random Numbers
Left turn	0.15	$0.00-0.15$
Through	0.60	$0.16-0.75$
Right turn	0.25	$0.76-1.00$

Model task

Example
Pick random number between 0 and 1

Generate event
Right turn

Continuous Events/Inputs

Let's assume that we can generate a random number R_{n} between zero and one that represents the probability $\mathrm{P}[\mathrm{h} \geq \mathrm{H}]$.

$$
R_{n}=P[h \geq H]=e^{-\lambda H}
$$

Solving for the headway H:

$$
\begin{gathered}
R_{n}=e^{-\lambda H} \\
\ln \left(R_{n}\right)=-\lambda H \\
H=-\frac{1}{\lambda} \ln \left(R_{n}\right)
\end{gathered}
$$

Model task	Example
Pick random number between 0 and 1	0.49
Generate interval between events (headway)	12.8 sec

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Clock Times

- Arrival Time (AT)
- Service Start Time (SST)
- Service End Time (SET)

Times Between Events

- Headway
- Service Time

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 1 and 2
2. Compute arrival time for vehicle 2
3. Compute service start time for vehicle 2
4. Generate service time for vehicle 2
5. Compute service end time for vehicle 2

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 1 and 2
2. Compute arrival time for vehicle 2
3. Compute service start time for vehicle 2
4. Generate service time for vehicle 2
5. Compute service end time for vehicle 2

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 1 and 2
2. Compute arrival time for vehicle 2
3. Compute service start time for vehicle 2
4. Generate service time for vehicle 2
5. Compute service end time for vehicle 2

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 1 and 2
2. Compute arrival time for vehicle 2
3. Compute service start time for vehicle 2
4. Generate service time for vehicle 2
5. Compute service end time for vehicle 2

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 1 and 2
2. Compute arrival time for vehicle 2
3. Compute service start time for vehicle 2
4. Generate service time for vehicle 2
5. Compute service end time for vehicle 2

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 2 and 3
2. Compute arrival time for vehicle 3
3. Compute service start time for vehicle 3
4. Generate service time for vehicle 3
5. Compute service end time for vehicle 3

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	-0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 2 and 3
2. Compute arrival time for vehicle 3
3. Compute service start time for vehicle 3
4. Generate service time for vehicle 3
5. Compute service end time for vehicle 3

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Model Process

1. Generate headway between vehicles 2 and 3
2. Compute arrival time for vehicle 3
3. Compute service start time for vehicle 3
4. Generate service time for vehicle 3
5. Compute service end time for vehicle 3

Interval: Service time
Duration: 0.2 s

Performance Measures

- Time in queue
- Time in server
- Time in system

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Time in queue $=$ Mean $\left(\right.$ SST $_{i}-$ AT $\left._{i}\right)$

Performance Measures

- Time in queue
- Time in server
- Time in system

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Time in server= Mean(ST $\left.{ }_{\mathrm{i}}\right)$

Performance Measures

- Time in queue
- Time in server
- Time in system

Veh\#	Random number	H (interval)	AT (clock time)	Random number	SST (clock time)	ST (interval)	SET (clock time)
1	0.47233	13.5	0.0	0.03930	0.0	15.4	15.4
2	0.06045	50.5	50.5	0.21612	50.5	7.3	57.8
3	0.72227	5.9	56.4	0.96334	57.8	0.2	58.0
4	0.46346	13.8	70.2	0.05013	70.2	14.2	84.4
5	0.55474	10.6	80.8	0.27233	84.4	6.2	90.6

Time in system $=$ Mean $\left(\mathrm{ST}_{\mathrm{i}}\right)+$ Mean $\left(\mathrm{SST}_{\mathrm{i}}-\mathrm{AT}_{\mathrm{i}}\right)$
Time in server Time in queue

Assignment 14

Objective:
Develop a stochastic, event-oriented simulation model for a twoway stop-controlled intersection that can be used to evaluate the performance of this intersection.

Assumptions:

- Each approach to the intersection has one lane.
- The east-west direction is the major street, while the northsouth direction is the minor street.
- Vehicle headways on both streets are assumed to be randomly distributed.

Assignment 14

Requirements:

- Your simulation model should be flexible enough to handle varying flow rates on either the minor street or the major street, as well as different values of the critical headway and the follow-up headway.
- The spreadsheet should include three sections: an input section, a model computation section, and output sections for the queuing theory results and the simulation results.
- The Input Section should include the minor street flow rate (veh/hr), the major street flow rate (veh/hr), the critical headway (sec), the follow-up headway (sec), the minor street capacity (veh/hr), the mean service rate (veh/sec) for the minor street vehicles, and the mean arrival rate (veh/sec) for the minor street vehicles.
- The Model Computational Section should include the following data for each vehicle: vehicle number, randomly-generated arrival headway, the arrival time of the vehicle into the system, the service start time (time vehicle arrives into the server), a randomly-generated service time, and the service end time (time vehicle departs from the server and the system).
- The Output-Simulation Results Section should include the mean service time, the mean queue time, the mean time in the system (average delay per vehicle), the simulation time, and the minor street flow rate.

Assignment 14

Task:
Set up your simulation model for a simulation run that will process 200 minor street vehicles and produce the output data described above. Assume the following data:

- Mean minor street flow rate is 200 veh/hr, mean major street flow rate is 300 veh/hr
- Critical headway for minor street drivers is 6.5 sec , follow-up headway for minor street drivers is 4.0 sec

Run the simulation model 20 times, each time recording the required output:

- Mean service time
- Mean queue time
- Mean time in the system (average delay per vehicle)
- Simulation time
- Minor street flow rate.

Deliverable:
Your deliverable is an Excel spreadsheet with your basic model and the results of the simulation.

Veh\#	Ran\#	Hdwy	ArrTime	Ran\#	ST	SST	SET	Qtime
1	0.26890	23.6	0	0.20201	7.6	0	7.6	0.0
2	0.00324	103.2	103.2	0.32949	5.3	103.2	108.5	0.0
3	0.15158	34.0	137.1	0.37364	4.7	137.1	141.8	0.0
4	0.74472	5.3	142.5	0.77031	1.2	142.5	143.7	0.0
5	0.57943	9.8	152.3	0.39448	4.4	152.3	156.7	0.0
6	0.04791	54.7	207.0	0.81550	1.0	207.0	207.9	0.0
7	0.33591	19.6	226.6	0.23918	6.8	226.6	233.4	0.0
8	0.75799	5.0	231.6	0.83952	0.8	233.4	234.2	1.8
9	0.47892	13.3	244.8	0.56315	2.7	244.8	247.6	0.0
10	0.12575	37.3	282.2	0.05791	13.6	282.2	295.7	0.0
11	0.35570	18.6	300.8	0.17568	8.3	300.8	309.0	0.0
12	0.84880	3.0	303.7	0.61347	2.3	309.0	311.4	5.3
13	0.71497	6.0	309.8	0.44722	3.8	311.4	315.2	1.6
14	0.08886	43.6	353.3	0.71210	1.6	353.3	355.0	0.0
15	0.00161	115.8	469.1	0.55267	2.8	469.1	471.9	0.0

